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Abstract

The number of Korteweg--deVries solitons that are excited from an arbi-

trary potential are determined using a simple intuitive model. The results
are compared with a numerical study of a nonlinear transmission line. The

technique cart be extended to nonlinear Schrfdinger solitons.

The number of Korteweg-deVries (KdV) solitons that are

excited due to an arbitrary excitation potential can be com-

puted using inverse scattering theory. This technique relates
this number to the number of bound states that are found in

solving the linear Schr6dinger equation where the excitation

potential is the potential welt. The technique is well

described in several texts and will not be reproduced here

[1]. It has been verified experimentally for ion acoustic soli-

tons in a plasma by Hershkowitz et al. [2] and Ikezi [3].

The mathematical procedure is, however, rather compli-

cated and at first brush, may not be very intuitive.

The purpose of the present note is to suggest a graphical

model for the soliton excitation that predicts the number of

excited solitons as a function of the size of the excitation

potential. The model is based on two fundamental KdV

soliton properties: (a) The product of the amplitude of the

soliton A and the square of its width W is equal to a con-

stant

A • W 2 = constant. (1)

The value of the constant depends upon the particular

values of the coefficients that appear in the KdV equation.

(b) Solitons do not overlap since their velocities are ampli-

tude dependent.

From the first property, we write that

_/-A" W = K (2)

where K is a constant. Ratlaer than employ the exact sech z;

profiles for the KdV solitons, let us consider them to be

pulses. The product given in (2) implies an area of a rec-

tangular pulse. The excitation potental whose amplitude is

B and width is L will have the same dimensions as (2) if we

write it as

L (3)
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The second property permits us to ascertain the number

of solitons that will be excited. In order to effect this compu-

tation, we draw the product defined in (3) as a large rectan-

gle in Fig. l(a). In addition, we draw the product defined in

(2) as a series of small rectangles. The number of solitons

that will be excited is equal to the number N of small rec-

tangles that will fit into the large rectangle plus one.

# of excited solitons = N + 1 (4)

If there is excess space within the large rectangle but not

enough to accommodate an additional small one, an addi-

tional soliton will not be excited. Radiation will appear fol-

lowing this surplus. The number of excited solitons will

increase in discrete steps that are proportional to the width

and the square root .of the amplitude of the excitation

potential.

In order to test this hypothesis, we numerically investi-

gated a Toda lattice [4]. The electrical analogy of the Toda

lattice consists of distributed series inductors and shunt

nonlinear capacitors. In the limit of continuous elements,

this transmission line can be described by a KdV equation

[5]. The rectangular input pulse of the transmission line can

be regarded as an excitation potential. The results of this

simulation are shown in Fig. 2. The simulation shows the
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soliton "radiation"
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sotito

Fig. 1. Soliton excitation model. Each shaded rectangle represents an
excited soliton. The excess unshaded region represents radiation. (a) KdV

solitons. (b) NLS solitons
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Fig. 2. The number of the solitons and the normalized amplitude of each

one as a function of the normalized width and the normalized amplitude of
the rectangular input pulse. Each line in a cluster is a soliton and the height
of each line represents the amplitude

soliton excitation as either the amplitude or the width of the

excitation signal are changed. At a fixed width, the number

of solitons scales in proportion to the square root of the

amplitude. At a fixed amplitude, the number of solitons

scales in proportion to the width. Both results, verified also

experimentally, are in agreement with the model. Note that

an additional soliton is launched at discrete integer values in

the parameter space. 3.

A heuristic model has been found to determine the 4.

number of KdV sol/tons that will be excited due to an arbi- .5.

trary excitation potential. Also, an inverse scattering

analysis of box initial conditions for the KdV equation 6.

results in the same quantization rule determining soliton
7.

production, i.e. the rule given by (4). A similar heuristic and

inverse scattering analysis for the nonlinear Schr6dinger

(NLS) equation requires that the boxes given in (2) and (3)

have the square root signs be removed. See Fig. l(b). We

speculate that there may exist a fundamental quantization

rule associated with these observations that awaits rigorous
proof.

We will report the details in a future paper, but sum-

marize the inverse scattering results as follows. For the KdV

equation, the associated scattering problem is the Schr6d-

inger equation of quantum mechanics [6] for which we con-

sider a box potential as a model of the initial pulse. Solitons

correspond to the bound states of this associated scattering

problem. The bound state spectrum for this problem has

already been obtained graphically [7], with the result that

A" W does indeed determine the number of the bound

states (solitons) according to rule (4). We have performed a

similar calculation for the threshold for soliton production

for the NLS equation, using the appropriate associated scat-

tering problem, and have found A • W determines soliton

production in this instance. These results are interesting
because these combinations of A and W are constant con-

formal invariants of the respective nonlinear equations [8].
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